A General Fuzzy Cerebellar Model Neural Network Multidimensional Classifier Using Intuitionistic Fuzzy Sets for Medical Identification

نویسندگان

  • Jing Zhao
  • Lo-Yi Lin
  • Chih-Min Lin
چکیده

The diversity of medical factors makes the analysis and judgment of uncertainty one of the challenges of medical diagnosis. A well-designed classification and judgment system for medical uncertainty can increase the rate of correct medical diagnosis. In this paper, a new multidimensional classifier is proposed by using an intelligent algorithm, which is the general fuzzy cerebellar model neural network (GFCMNN). To obtain more information about uncertainty, an intuitionistic fuzzy linguistic term is employed to describe medical features. The solution of classification is obtained by a similarity measurement. The advantages of the novel classifier proposed here are drawn out by comparing the same medical example under the methods of intuitionistic fuzzy sets (IFSs) and intuitionistic fuzzy cross-entropy (IFCE) with different score functions. Cross verification experiments are also taken to further test the classification ability of the GFCMNN multidimensional classifier. All of these experimental results show the effectiveness of the proposed GFCMNN multidimensional classifier and point out that it can assist in supporting for correct medical diagnoses associated with multiple categories.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decision making in medical investigations using new divergence measures for intuitionistic fuzzy sets

In recent times, intuitionistic fuzzy sets introduced by Atanassov has been one of the most powerful and flexible approaches for dealing with complex and uncertain situations of real world. In particular, the concept of divergence between intuitionistic fuzzy sets is important since it has applications in various areas such as image segmentation, decision making, medical diagnosis, pattern reco...

متن کامل

A note on decision making in medical investigations using new divergence measures for intuitionistic fuzzy sets

Srivastava and Maheshwari (Iranian Journal of Fuzzy Systems 13(1)(2016) 25-44) introduced a new divergence measure for intuitionisticfuzzy sets (IFSs). The properties of the proposed divergence measurewere studied and the efficiency of the proposed divergence measurein the context of medical diagnosis was also demonstrated. In thisnote, we point out some errors in ...

متن کامل

A New Uncertain Modeling of Production Project Time and Cost Based on Atanassov Fuzzy Sets

  Uncertainty plays a major role in any project evaluation and management process. One of the trickiest parts of any production project work is its cost and time forecasting. Since in the initial phases of production projects uncertainty is at its highest level, a reliable method of project scheduling and cash flow generation is vital to help the managers reach successful implementation of the ...

متن کامل

Multimodal medical image fusion based on Yager’s intuitionistic fuzzy sets

The objective of image fusion for medical images is to combine multiple images obtained from various sources into a single image suitable for better diagnosis. Most of the state-of-the-art image fusing technique is based on nonfuzzy sets, and the fused image so obtained lags with complementary information. Intuitionistic fuzzy sets (IFS) are determined to be more suitable for civilian, and medi...

متن کامل

Novel Applications of Intuitionistic Fuzzy Digraphs in Decision Support Systems

Many problems of practical interest can be modeled and solved by using graph algorithms. In general, graph theory has a wide range of applications in diverse fields. In this paper, the intuitionistic fuzzy organizational and neural network models, intuitionistic fuzzy neurons in medical diagnosis, intuitionistic fuzzy digraphs in vulnerability assessment of gas pipeline networks, and intuitioni...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016